If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X=81
We move all terms to the left:
X^2+12X-(81)=0
a = 1; b = 12; c = -81;
Δ = b2-4ac
Δ = 122-4·1·(-81)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{13}}{2*1}=\frac{-12-6\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{13}}{2*1}=\frac{-12+6\sqrt{13}}{2} $
| (11x−25)+(24x+10)=90(11x−25)+(24x+10)=90 | | 5x+4.25=35 | | 5/6+p=9 | | -5(x+2)=42 | | 5.00x+4.25=35 | | 3x+2.3/5=7 | | 5.00x+4.25=$35 | | 180=6x-120 | | 8x/3+5x=46= | | x5+3=7 | | 4x³-30x²+102x=95 | | 2-13n=28 | | 10b–19=11 | | 24=8d+9d | | 20(o+1/8)=15/4 | | -5v-7=-3v-1 | | 5(x-8)=x | | 7c-11=38 | | 9n-8n=35 | | 900-((x+8)+(3x)+(2x+10)+(2x+4)+(3x+8))=540 | | -2*g=-12 | | |5y-2|=7 | | 4x³-30x²+102x-95=0 | | -1/2(3x+30)=20 | | 3p=-29 | | 7z-2-4=24 | | 30+4p-47=p+44 | | 12x+2+2x=52 | | 12x+5+2x=52 | | 180=4y | | 6y-10=5y | | X-10+4x-5=7x-5 |